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Abstract

Background: One of the challenging decision-making tasks in healthcare centers is the interpretation of blood gas
tests. One of the most effective assisting approaches for the interpretation of blood gas analysis (BGA) can be artificial
intelligence (Al)-based decision support systems. A primary step to develop intelligent systems is to determine infor-
mation requirements and automated data input for the secondary analyses. Datasets can help the automated data
input from dispersed information systems. Therefore, the current study aimed to identify the data elements required
for supporting BGA as a dataset.

Materials and methods: This cross-sectional descriptive study was conducted in Nemazee Hospital, Shiraz, Iran.

A combination of literature review, experts' consensus, and the Delphi technique was used to develop the dataset.

A review of the literature was performed on electronic databases to find the dataset for BGA. An expert panel was
formed to discuss on, add, or remove the data elements extracted through searching the literature. Delphi technique
was used to reach consensus and validate the draft dataset.

Results: The data elements of the BGA dataset were categorized into ten categories, namely personal information,
admission details, present ilinesses, past medical history, social status, physical examination, paraclinical investigation,
blood gas parameter, sequential organ failure assessment (SOFA) score, and sampling technique errors. Overall, 313
data elements, including 172 mandatory and 141 optional data elements were confirmed by the experts for being
included in the dataset.

Conclusions: We proposed a dataset as a base for registries and Al-based systems to assist BGA. It helps the storage
of accurate and comprehensive data, as well as integrating them with other information systems. As a result, high-
quality care is provided and clinical decision-making is improved.

Keywords: Blood gas analysis, Databases, Information science, Artificial intelligence, Clinical decision-making

Background

Artificial intelligence (AI) has revolutionized the health

care industry. The Al technologies allow data analysts

to transform raw data generated in healthcare facilities

into meaningful insights for an effective decision-making
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facilitate decision-making in healthcare facilities using
a large amount of data, medical knowledge, and analy-
sis engines. These systems make patient-specific assess-
ments or recommendations for healthcare providers [2].

One of the challenging decision-making tasks in
healthcare centers is the interpretation of blood gas tests.
Arterial/venous blood gas tests are among the high-
cost and frequently-ordered tests in intensive care units
(ICUs). These tests demonstrate the respiratory and met-
abolic status of patients, as well as acid—base balance [3,
4]. Acid—base imbalance can cause negative outcomes in
patients, such as damage to the kidneys, cardiovascular
system, and nervous system; if serious, it can be consid-
ered as a risk factor for death [5]. Consequently, the rapid
diagnosis of blood gas disorders and acid—base imbal-
ance can prevent severe complications. In order to make
these tests effective diagnostic tools, physicians need to
be professional in interpreting blood gas analysis (BGA).
However, in contrast to other tests with values higher or
lower than normal, BGA contains more than six param-
eters, which are complicated and difficult to interpret [6].

To simplify the interpretation of BGA, Al-based deci-
sion support systems can be highly useful [7]. These
systems assist healthcare providers by transforming
raw health data, documents, and expert practice into
sophisticated algorithms or techniques, such as machine
learning or knowledge graphs. As a result, healthcare
decision-makers can find appropriate solutions to the
underlying medical problems [8]. Al-based decision sup-
port systems can support BGA according to their knowl-
edge base and predefined algorithms.

An initial step for developing intelligent systems is to
determine information requirements and automated
input of data for secondary analyses [9]. Jamieson
et al [10]. found that electronic documentation improves
the quality of documentation. The interoperability of data
among information systems is necessary for the auto-
matic input of data. Datasets can help automated input
of data from dispersed information systems [11, 12].
Dataset is a comprehensive data element list on a spe-
cific clinical condition [13], procedure [14], specialty [15],
healthcare process [16], or an entire domain with broad
scope [17].

Datasets may include historical data which can help
us interpret an impression, a diagnosis, or a treatment
for planning future follow-up strategies [9]. In order to
develop a robust Al-based system, one should ensure
seamless and comprehensive access to the related infor-
mation, suggestively an integrated data view compris-
ing of electronic health records, computerized physician
order entry, laboratory systems, and other related appli-
cations. Such an arrangement would facilitate access
to information as a comprehensive centralized data
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repository, which can be used to support various clinical
decision support systems, machine learning, data mining,
and deep learning. Moreover, the quality of data remark-
ably affects the standards and outcomes of the resultant
decision support system [18]. The quality of data can be
enhanced by proper structuring following the data stand-
ardization approach [19]. Datasets have been used in
previous researches for Al-based technologies, includ-
ing machine learning, deep learning, and data mining.
For instance, Muhammad et al. applied machine learning
models for the prediction of Coronavirus disease 2019
using an epidemiology dataset [20]. Hussain et al. also
applied data mining algorithms on an accident dataset to
determine the causes of accidents or prone locations [21].
Langarizadeh and Gholinezhad [22] have emphasized
the role of defining datasets in laboratory reports, such
as demographic, administrative, clinical, insurance, anes-
thesia, laboratory, observation, and interpretation for
exchanging with information systems. A blood gas test
needs a dataset as a base for developing Al-based sys-
tems. To our knowledge, there is no dataset developed for
BGA. Therefore, the present study aimed to identify the
data elements required for supporting BGA as a dataset.

Materials and methods

Study design and setting

This cross-sectional descriptive study was conducted in
2020-2021. Experts from two hospitals affiliated to Shi-
raz University of Medical Sciences, namely Nemazee and
Rajaee hospitals, in addition to experts from Kashan Uni-
versity of Medical Sciences participated in this study. The
present study was conducted in Nemazee Hospital with
925 active beds as the largest educational and treatment
center in Shiraz and the only referral hospital in Southern
Iran. This hospital is also a pioneer in developing infor-
mation systems, especially for ICUs [23, 24].

Data elements identification

A combination of literature review, experts’ consensus,
and the Delphi technique was used to identify the data
elements.

Stage one: literature review

To determine the data elements for the BGA dataset,
first, a review of the literature was performed on the
electronic databases of Cochrane Library, PubMed, and
SCOPUS. A combination of terms related to dataset or
registry (e.g., “dataset’; OR “common data’, OR “element’,
OR “MDS’; OR “algorithms’, OR “Guideline’, OR “Clini-
cal Protocols’, OR “registries’, “information system”, OR
“electronic health record’, OR “database” AND terms
related to blood gas, including “Blood Gas Analysis’, OR
“arterial blood gas’, OR “venous blood gas’, OR “ABG’,
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OR “VBG” were searched in titles and abstracts were
performed. In addition, a manual search of the related
textbooks, patients’ records, and the following websites
was performed: “American Thoracic Society’, “Ameri-
can Association for Critical Care Nurses”, “Respirology’,
British Association for

“European Respiratory Society’, “
Critical Care Nurses’, and “Emergency Medical Journal
and Thorax”.

Inclusion and exclusion criteria

Any relevant papers reporting the indications or consid-
erations for ordering BGA, as well as papers reporting
any influential factors in BGA, or presenting a protocol,
algorithm, rules, or explanation on how to analyze the
blood gas results were included. Moreover, the existing
datasets or registries capturing the data related to blood
gas disorders were investigated [25-27]. Any report,
guideline, and form available on the searched websites
were also included. Studies were included without time
limit if were published in the English language and their
full text contained the determined keywords in the title
or abstracts. Single case reports and studies on neonates,
children, or animals were excluded.

Stage two: experts’ consensus

A team of four experts, including a critical care special-
ist, a general practitioner with sufficient knowledge about
blood gases, and two health information management
specialists, was formed as an expert panel. The list of data
elements extracted through a literature search was pre-
sented to the expert panel. Several sessions were held to
tailor the initial draft of the dataset to the specific needs
and practices of the ICUs by incorporating the opinion
of medical specialists. Experts were invited to discuss on,
add, or remove the data elements presented in the draft
dataset. The criteria that might influence blood gas based
on rational principles and are likely to be considered by
physicians when interpreting the test results or are used
for taking actions received higher scores. On the other
hand, the criteria that do not affect blood gas received
lower scores.

Eleven expert panel sessions were held to finalize the
dataset. These expert panels started on 10 November
2020 and ended on 2 May 2021. Some of these sessions
were held in the office of central ICU in Nemazee Hospi-
tal and some were held in the Anesthesiology and Criti-
cal Care Research Center affiliated to Shiraz University
of Medical Sciences. Diseases in the draft dataset were
categorized based on the eleventh version of the Inter-
national Statistical Classification of Diseases and Related
Health Problems (ICD-11). After finalizing the initial
draft of the dataset in expert panel sessions, the dataset
was presented as a checklist, the content validity of which
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was confirmed by four experts, including two other criti-
cal care specialists, one internal medicine specialist, and
one health information management. They assessed the
criteria in terms of clarity, contribution to BGA, and
interpretability.

Stage three: delphi technique

Delphi technique was used to reach consensus and vali-
date the draft dataset. Delphi technique is utilized by
researchers when the available knowledge/information/
dataset/study is incomplete or is subjected to uncer-
tainty and hence, a group opinion or decision is made
based on the interaction between the researchers and
a group of identified experts [28]. Another group of
experts, including two anesthesiologists, two critical care
specialists, two nephrologists, and two neurosurgeons
were invited to review the dataset draft. The researcher
presented the questionnaire to the experts and a face-
to-face brief explanation was given about the study and
the dataset design. These experts were asked to answer
the questionnaire based on “Yes” (including mandatory
and optional) and “No” options. Mandatory or optional
were selected based on the impact of the data element on
BGA or the complication of the results, as well as their
prevalence/frequency of use (for diseases, medications,
or toxins). Furthermore, “mandatory” data elements are
those required when the user expects Al-based decision
support systems to present a simple BGA. On the other
hand, “optional” data elements are those needed when
the user expects an advanced comprehensive BGA. Pre-
vious studies mostly focused on simple BGA [6, 29, 30].
However, in the current study, we created the "manda-
tory" and "optional" divisions to determine data elements
required for simple and advanced BGA, respectively.
A blank row was considered at the end of each section
for experts to leave comments or to add necessary data
elements. If 75% or more experts selected the “YES”
option (either mandatory or optional), the data element
was considered to be contained in the datasets. If 50% of
experts selected the “NO” option, the data element was
removed. If the consensus was between 50%-75%, the
data elements needed revision. Six anesthesiologists and
critical care attendants participated in another expert
panel to discuss on and decide about the inclusion or
exclusion of data elements with a 50%-75% consensus.
The reliability of the dataset was evaluated based on the
split-half method (the Guttman split-half coefficient was
0.83).

Results

As shown in Fig. 1, following the literature review step,
385 data elements were extracted. After expert panel
sessions, 43 data elements were deemed unnecessary
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Fig. 1 Flowchart of data elements determination

Final confirmed data
elements: 313

and were excluded. Delphi technique also resulted in
the exclusion of 18 data elements. Moreover, 21 data
elements obtained a consensus rate of 50%-75% and
needed revision. An expert panel was held to discuss
the latter 21 data elements, of which 11 were excluded
resulting in 313 data elements. Table 1 shows the agree-
ment level between Delphi method and the experts vot-

ing in each level.

Table 1 Agreement levels in Delphi method and the experts

voting in each level

Agreement level

Decision on the data element Percentage of
experts voting

>75%
50<agreement<75
<50%

Accepted 88.30%
Discussed on the expert panel 6.14%
Declined 5.26%
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The dataset of BGA was categorized into ten categories:
1) Personal information, 2) Admission details, 3) Present
illnesses, 4) Past medical history, 5) Social status, 6) Phys-
ical examination, 7) Paraclinical investigation, 8) Blood
gas parameter, 9) Sequential organ failure assessment
(SOFA) score, and 10) Sampling technique errors (ABG
Error). Overall, 313 data elements, including 172 manda-
tory and 141 optional data elements were confirmed by
the experts to be contained in the dataset (Table 2).

Essential data elements of “personal information”
entailed medical record number, national code, first and
last name, father’s name, age, gender, birth date, esti-
mated height, and estimated weight. “Admission details”
include date/time of admission to hospital/ICU, admis-
sion type, surgical admission, insurance coverage, pri-
mary diagnosis, ICU diagnosis, and ICU intervention.

“Present illnesses” were defined as diseases that influ-
ence BGA and affected patients during the week before
admission to the hospital. “Present illnesses” and “Past
medical history” both included the subcategories of res-
piratory disease, renal disease, gastrointestinal disease/
liver disease, endocrine disease, cardiovascular disease,
hematologic disease, and neurologic disease. However,
the subcategories did not contain the same data ele-
ments. In addition, “Present illnesses” included infectious
disease, trauma, drugs, and toxins as the further subcat-
egories that can affect BGA. The other subcategories of
“Past medical history” were genetic/congenital disorders,
rheumatology/musculoskeletal diseases, and malignancy.

“Social status” data elements that affect BGA included
opioid dependency, chronic alcohol consumption, seda-
tive dependency, and tobacco chewing. The subcatego-
ries of “Physical examination” entailed vital signs, GCS,
respiratory status, sedation status (RAS score), numeric
pain scale, behavioral pain score, diaphoresis, shivering,
cyanosis (if spO, unavailable or suspicious), urine output,
nasogastric drainage, edematous states, and poor tissue
perfusion (regional hypo-perfusion). “Paraclinical inves-
tigation” category was all the examinations that can help
analyze blood gas, including but not limited to hemo-
globin, potassium, blood urea nitrogen, creatinine, chlo-
ride, glucose, lactate, anion and osmolar gap, as well as
the related measurements. The complete proposed data-
set for BGA is presented in Table 3.

Discussions

In the present study, 313 data elements were approved
by the experts to be contained in the dataset, including
172 mandatory and 141 optional data elements. These
data elements were categorized into ten main catego-
ries, namely “Personal information’, “Admission details’,
“Present illnesses”, “Past medical history’, “Social sta-
" “Paraclinical investigation’,

tus”, “Physical examination’,
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“Blood gas parameters’, “SOFA score’, and “Sampling
technique errors (ABG Error)”.

Despite the wide adoption of Al-based applications,
such as machine learning in ICUs, to our knowledge, this
is the first developed dataset of data elements required
for comprehensive BGA. However, according to the sys-
tematic reviews performed by Syed et al. and Shillan et al.
[31, 32], machine learning applications are widely applied
for predicting ICU mortality, readmission, acute kidney
injury, and sepsis. Although advances in Al-bassed tech-
niques have turned from “a future possibility” to an “eve-
ryday reality” for managing patients in ICUs, there are
still challenges in the usage of these systems [33].

Due to the lack of interoperability of electronic systems
which results in a lack of data integration, the potential
of hospital data for solving healthcare problems is yet to
be fully realized. Developing Al-based systems requires
large datasets for modeling complex and non-linear
effects or developing evidence-based algorithms [34, 35].
In an attempt to cover this issue in intensive care, John-
son et al. [25] released the Medical Information Mart for
Intensive Care (MIMIC-III) dataset that allows research-
ers to solve complex healthcare problems through devel-
oping electronic systems [31]. For instance, through
extracting relevant features from the MIMIC-III dataset,
Yang et al. [36] proposed an algorithm based on the non-
invasive physiological parameters of patients to calculate
the partial pressure of oxygen/fraction of inspired oxygen
(PaO,/FiO,) ratio for the identification of patients with
acute respiratory distress syndrome. However, contrary
to our proposed dataset, the MIMIC-III dataset does not
contain all the specific data required for BGA. Our pro-
posed dataset has the potential to be used as a base for
developing such databases.

Some of the obtained data elements in our study are
similar to those of previous investigations. Australian and
New Zealand Intensive Care Society (ANZICS) has built
one of the largest single datasets for ICU adult patients
[26]. It contains a section named “blood gases” which col-
lects data on the date and time of blood gas test, FiO,,
PaO,, the partial pressure of carbon dioxide (PaCO,), pH,
and whether patients were intubated. However, it lacks
many of the data elements required for automatic BGA.
In addition to these essential data elements, our dataset
contains diseases, drugs, toxins, and other paraclinical
investigations which might affect blood gas interpreta-
tion. As a secondary verification or rather a confirmation
practice, we recommend further evaluations of Al meth-
ods, such as machine learning using the proposed dataset
in future studies.

One concern in the proposed dataset is the high num-
ber of data elements required for automatic BGA. Many
of these data elements can be uploaded using the existing
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Table 2 The categories and subcategories of the proposed dataset
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Category

Subcategory

Number of data
elements

Mandatory

Optional

1-Personal Information
2-Admission Details
3-Presentillness

4-Past Medical History:

5-Social status
-Physical examination

7-Para-clinical investigation
8-Blood gas parameter
9-SOFA score

10-Sampling technique

1-1-Personal Information
2-1-Admission Details
3-1-Respiratory disease
3-2-Renal disease
3-3-Gastrointestinal disease/ Liver disease
3-4-Endocrine disease
3-5-Cardiovascular disease
3-6-Hematologic disease
3-7-Neurologic disease
3-8-Infectious disease
3-9-Trauma

3-10-Drugs

3-11-Toxins

Total

4-1-Respiratory disease
4-2-Renal disease
4-3-Gastrointestinal disease/ Liver disease
4-4-Endocrine disease
4-5-Cardiovascular disease
4-6-Hematologic disease
4-7-Neurologic disease
4-8-Genetic/Congenital disorders
4-9-Rheumatology/ musculoskeletal disease
4-10- Malignancy

Total

5-1-Social status

6-1-vital signs

6-2-GCS (physician note)
6-3-Respiratory (FiO2%):
6-4-Sedation status (RAS score)
6-5-Numeric pain scale
6-6-Behavioral Pain Score
6-7-Diaphoresis

6-8-Shivering

6-9-Cyanosis (if spO2 unavailable or suspicious)

6-10-Urine output
6-11-Nasogastric drainage
6-12-Edematous states

6-13-Poor tissue perfusion (regional hypo-perfusion)

Total

7-1- Para-clinical investigation

8-1- Blood gas parameter

9-1- SOFA score

10-1- Sampling technique errors (ABG Error)
Total

10
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electronic systems. For instance, a dataset has been
developed for collecting progress notes data in Nema-
zee hospital [37]. It helped the electronic documentation
of progress notes in the ICU. Therefore, it can be used
to feed Al-based decision support systems designed for
BGA. Another solution is a parent—child format of the
dataset. The main category of “Past medical history”
is a parent with eleven children. The Al-based decision
support system requires the users to answer to a parent
(with “YES” or “NQO”). If “NO” is selected none of the
children will be shown, and the system would ask the
user to answer to the next parent, for example, “social
status” with “YES” or “NO”. This approach would prevent
designing a primitive user interface with complex menus
and lots of scrolling to fill out the required data ele-
ments, which are not suited to the fast pace of the ICUs.
Through reviewing the trend of “monitoring” and “data
acquisition” systems in ICUs, Georgia et al. [38] found
that acquiring, synchronizing, integrating, and analyz-
ing patient data is difficult because of the insufficient
computational power and a lack of specialized software,
incompatibility between monitoring equipment, and
limited data storage. The development and application
of datasets in practice assist in removing these technical
challenges. Moreover, creating “mandatory” or “optional”
divisions allows decreasing the data elements to save the
time required for BGA, which means if the user selects a
simple analysis, the data elements, required to be filled,
will dramatically decrease.

Conclusion

We proposed a dataset as a base for developing Al-based
systems to assist BGA. It helps the storage of accurate
and comprehensive data, as well as the integration of
these data in other information systems. Moreover, it
contributes to the provision of high-quality care and
better clinical decision-making through implementing
the AI methods that help manage patients. This dataset
has the potential to foster building databases with ICUs
which is helpful for researchers, students, and policy-
makers for improving patients care in ICUs.
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